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A methylene–phosphorus �-bond of cyanomethyldiphenyl-
phosphine oxide was found to add across a carbon–carbon triple
bond of arynes, leading to the simultaneous introduction of cya-
nomethyl and diphenylphosphinyl moieties into 1,2-positions of
the aromatic skeletons.

Addition reactions of an element–element �-bond across a
triple bond of arynes have attracted considerable attention as a
general and potent method for simultaneous introduction of
two elements into the adjacent positions of the aromatic skele-
tons, resulting in the formation of diverse polysubstituted arenes,
which are otherwise difficult to prepare.1,2 In particular, the ad-
ditions of a carbon–element �-bond would have high synthetic
significance, since the reactions are inevitably accompanied by
construction of carbon framework through carbon–carbon bond
forming processes.3 Recently, we have disclosed that a carbon–
carbon �-bond of �-dicarbonyl4,5 or �-cyanocarbonyl6 com-
pounds readily add to arynes, demonstrating that two carbon–
carbon �-bonds are formed in one step. Since then, we have been
studying the reactions of arynes with active methylene com-
pounds containing other electron-withdrawing groups, and have
found that cyanomethyldiphenylphosphine oxide adds to arynes
at its methylene–phosphorus moiety solely. Herein, we report on
the carbophosphinylation of arynes, in which carbon–carbon and
carbon–phosphorus bonds are generated all at once (Eq 1).7
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First, we examined the reaction of in situ-prepared benzyne
(from 1a and KF/18-Crown-6)8 with cyanomethyldiphenylphos-
phine oxide (2a) in THF at room temperature, and observed that
insertion of benzyne into the methylene–phosphorus �-bond
took place smoothly to afford diphenyl[2-(cyanomethyl)-
phenyl]phosphine oxide (3aa) in 67% yield (Scheme 1).9 Such
substituted arynes as 4,5-dimethylbenzyne (from 1b), 4,5-tri-
methylenebenzyne (from 1c), or 2,3-naphthalyne (from 1d) also
took part in the reaction, offering the respective carbophosphin-
ylation products (3ba–3da) in moderate yields. In marked con-
trast, the reaction of 3,6-dimethoxybenzyne (from 1e) became
sluggish, probably owing to the steric congestion around the tri-
ple bond. An unsymmetrical aryne, 3-methoxybenzyne (from
1f), underwent the addition of 2a as well to produce 3fa exclu-
sively, which holds the diphenylphosphinyl moiety at the ortho
position of the methoxy group.10 The intermediacy of an aryne in
the present reaction has been confirmed by the reaction of 4-
methylbenzyne (from 1g), where a mixture of regioisomeric
products (3ga and 30ga) was obtained in equal ratio.11,12

The reaction is also applicable to cyanomethylphosphonate
2b to furnish a 38% yield of 3ab with the formation of 2:1 cou-
pling product 4ab, bearing the second benzyne-derived phenyl

moiety at the benzylic position (Scheme 2).
In contrast to the cases with 2a or 2b, the reaction of

benzyne with ethyl (diphenylphosphinyl)acetate (2c) occurred
at both methylene–phosphorus and methylene–carbonyl bonds,
giving 3ac and 5ac in almost equal ratio (Scheme 3).

The present reaction would be triggered by a nucleophilic
attack of an in situ-generated anionic species to an aryne to form
6 as depicted in Scheme 4.13 Subsequent intramolecular nucleo-
philic substitution at a phosphorus moiety of 6 produces benzyl
anion 7, which further reacts with a proton or a second aryne to
afford 3 or 4, respectively. The perfect regioselectivity observed
in the reaction of 3-methoxybenzyne can be rationally explained
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1a: R = H
1b: R = 4,5-Me2
1c: R = 4,5- −(CH2)3−
1d: R = 4,5- −(CH)4−
1e: R = 3,6-(MeO)2
1f: R = 3-MeO
1g: R = 4-Me

PPh2

O

CN

3ba: 43% (24 h)

Me

Me

PPh2

O

CN

3ca: 39% (30.5 h)

PPh2

O

CN

3da: 39% (20 h)

PPh2

O

CN

3ea: 13% (28 h)

OMe

OMe

PPh2

O

CN

3fa: 26% (23.5 h)

OMe

PPh2

O

CN

Me PPh2

O

CN
Me

+

3ga 3'ga

40% (21.5 h, ratio = 50:50)

2a

Scheme 1.

P(OEt)2

O

CN

KF
18-Crown-6

THF, rt, 8 h
+

(EtO)2P CN

O

1a

2b 3ab: 38%

P(OEt)2

O

CN
+

Ph
4ab: 8%

Scheme 2.

1538 Chemistry Letters Vol.34, No.11 (2005)

Copyright � 2005 The Chemical Society of Japan



by a steric and/or electron-withdrawing effect of the methoxy
group, both of which favor the nucleophilic attack at m-position
of the substituent. In the case of 4-methylbenzyne, steric and
electronic differences around the triple bond would be negligi-
ble, and thus, an equal addition to the both ends takes place, lead-
ing to the formation of a mixture of regioisomers. On the other
hand, the generation of 3ac and 5ac in the reaction with 2cwould
be ascribable to the synchronous nucleophilic substitution at the
phosphorus (60) and the carbonyl (600) moieties.14

In conclusion, we have disclosed a carbon–phosphorus
�-bond addition reaction to arynes, which enables direct and
simultaneous introduction of carbon and phosphorus functional
groups into the adjacent positions of the aromatic skeletons. Fur-
ther studies on the improvement of the yield as well as on expan-
sion of the reaction scope are in progress.

We thank Central Glass Co., Ltd. for a generous gift of
trifluoromethanesulfonic anhydride.
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